Inhibition of angiogenesis and breast cancer xenograft tumor growth by vegi, a novel cytokine of the tnf superfamily

Author(s):  
Yifan Zhai ◽  
Jingyi Yu ◽  
Luisa Iruela-Arispe ◽  
Wei-Qun Huang ◽  
Zheng Wang ◽  
...  
2015 ◽  
Vol 22 (5) ◽  
pp. 713-724 ◽  
Author(s):  
Suzanne E Wardell ◽  
Erik R Nelson ◽  
Christina A Chao ◽  
Holly M Alley ◽  
Donald P McDonnell

Endocrine therapy, using tamoxifen or an aromatase inhibitor, remains a first-line treatment for estrogen receptor 1 (ESR1) positive breast cancer. However, tumor resistance limits the duration of response. The clinical efficacy of fulvestrant, a selective ER degrader (SERD) that triggers receptor degradation, has confirmed that ESR1 often remains engaged in endocrine therapy resistant cancers. Recently developed, selective ER modulators (SERMs)/SERD hybrids (SSHs) that facilitate ESR1 degradation in breast cancer cells and reproductive tissues have been advanced as an alternative treatment for advanced breast cancer, particularly in the metastatic setting. RAD1901 is one SSH currently being evaluated clinically that is unique among ESR1 modulators in that it readily enters the brain, a common site of breast cancer metastasis. In this study, RAD1901 inhibited estrogen activation of ESR1in vitroandin vivo, inhibited estrogen-dependent breast cancer cell proliferation and xenograft tumor growth, and mediated dose-dependent downregulation of ESR1 protein. However, doses of RAD1901 insufficient to induce ESR1 degradation were shown to result in the activation of ESR1 target genes and in the stimulation of xenograft tumor growth. RAD1901 is an SSH that exhibits complex pharmacology in breast cancer models, having dose-dependent agonist/antagonist activity displayed in a tissue-selective manner. It remains unclear how this unique pharmacology will impact the utility of RAD1901 for breast cancer treatment. However, being the only SERD currently known to access the brain, RAD1901 merits evaluation as a targeted therapy for the treatment of breast cancer brain metastases.


2021 ◽  
Vol 53 (4) ◽  
pp. 454-462
Author(s):  
Ting Li ◽  
Xiaomin Zuo ◽  
Xiangling Meng

Abstract Circular RNAs (circRNAs) play either oncogenic or tumor suppressive roles in gastric cancer (GC). A previous study demonstrated that circ_002059, a typical circRNA, was downregulated in GC tissues. However, the role and mechanism of circ_002059 in GC development are still unknown. In this study, the levels of circ_002059, miR-182, and metastasis suppressor-1 (MTSS1) were examined by real-time quantitative polymerase chain reaction and western blot analysis. Cell proliferation and migration were evaluated by MTT assay and Transwell migration assay, respectively. The interactions between miR-182 and circ_002059 or MTSS1 were analyzed by dual-luciferase reporter assay. A GC xenograft model was established to validate the role of circ_002059 in GC progression in vivo. Overexpression of circ_002059 significantly inhibited, whereas knockdown of circ_002059 notably facilitated, cell proliferation and migration in GC cells. MTSS1 was found to be a direct target of miR-182 and circ_002059 upregulated MTSS1 expression by competitively sponging miR-182. Transfection with miR-182 mimic and MTSS1 silencing abated the inhibitory effect of circ_002059 on GC progression. Circ_002059 inhibited GC cell xenograft tumor growth by regulating miR-182 and MTSS1 expression. Collectively, Circ_002059 inhibited GC cell proliferation and migration in vitro and xenograft tumor growth in mice, by regulating the miR-182/MTSS1 axis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e75356 ◽  
Author(s):  
Chern Chiuh Woo ◽  
Annie Hsu ◽  
Alan Prem Kumar ◽  
Gautam Sethi ◽  
Kwong Huat Benny Tan

2011 ◽  
Vol 33 (2) ◽  
pp. 413-419 ◽  
Author(s):  
J. J. Johnson ◽  
S. M. Petiwala ◽  
D. N. Syed ◽  
J. T. Rasmussen ◽  
V. M. Adhami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document